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Solitary waves in continuum media pass through each other with only a slight phase change. However, in an
intrinsically nonlinear many-body system such solitary waves could behave differently. It was predicted and
experimentally confirmed that head-on solitary wave collisions in granular alignments are followed by the
formation of tiny secondary solitary waves in the vicinity of the collision point. While it remains a challenge
to provide an analytical treatment of the local time evolution, we present arguments and associated simulations
to address a crucial unknown, namely, why the secondary solitary waves must form. Extensive numerical
investigations on solitary wave collisions at a grain center and at an edge show marked differences. The effects
of softening the grain repulsion are discussed to validate the arguments.
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I. INTRODUCTION

The study of nonlinear waves in continuum systems such
as in liquids has a long history �1�. Solitary waves �SWs�,
which are compact propagating bundles of energy, are a kind
of nonlinear wave that has been the subject of many studies
�1–3�. Existing theory contends that when two identical and
opposite propagating SWs meet, they pass through each
other suffering only a phase shift �4�. However, some old
experimental evidence already exists that claims that weak
dispersive waves may be generated from the collision region
of SWs �5�.

Propagation of SWs in discrete alignments of grains has
attracted significant recent attention �6–8�. Collision of iden-
tical and opposite propagating SWs in granular alignments
show that postcollision SWs are different from precollision
SWs. The former carry more energy than the latter �9,10�.
Dynamical simulations using energy conservation reveal that
some energy is retained in the collision region shortly after a
collision. This energy leads to the formation of weak or sec-
ondary solitary waves �SSWs� in the vicinity of the collision
point. Now experimentally confirmed �9�, these nondisper-
sive SSWs were seen earlier in simulations �10� and is a
well-established phenomenon in nonlinear dynamics of dis-
crete systems. This paper focuses on why these SSWs must
form and its consequences. It is perhaps relevant to note that
understanding the process of SSW creation and control is a
difficult problem and the objective of the paper is to develop
a qualitative picture to explain numerical and experimental
observations.

At this time there is no exact solution that exists to even
describe a propagating SW far from the edges in a granular
alignment. Continuum approximation �6� and an approxi-
mate solution for grain displacement, velocity, and accelera-
tion are all that are available �8�. Both solutions are valid far
from the boundaries where dynamics is quite different �11�.
Hence, arguments and simulations are our only options for
probing SW collisions and SSW formation at this stage.
However, successful construction of the correct qualitative
picture to describe SW collisions could set the stage for a

future theory even in the absence of an exact solution.
This paper is organized as follows. The physics model is

described first. We next argue that the outcome of SW colli-
sions must depend on the characteristics of the boundary and
the softness of the potential. These expectations are then
shown to be confirmed through dynamical simulations. We
conclude by suggesting that SSW formation signifies the
possible existence of a generalized equilibrium state in con-
fined nonlinear chains.

II. MODEL AND METHOD

Let R and m be the radius and mass, respectively, of each
spherical elastic grain placed in locations z1 ,z2 , . . . in an
alignment in such a way that the dynamics is translational.
We assume that Young’s modulus Y and Poisson’s ratio �
describe the elastic grains. The grains barely touch one an-
other at the initial time t=0 and the system is assumed to be
held within fixed end walls. If any two spheres i and i+1
come in intimate contact, they repel according to the Hertz
law �12�, V��i,i+1�=a�i,i+1

5/2 where �i,i+1�2R− �zi+1−zi�, and
a= 2

5D
�R

2 , and D= 3�1−�2�
2Y . In general, instead of considering

spheres with V��i,i+1�=a�i,i+1
5/2 , one can insert n ��2� instead

of 5/2 for the exponent of �i,i+1 along with an appropriate
change in the dimensions of a such that V has the units of
energy. For n→2 one finds a “soft” nonlinear potential with
n=2 being where nonlinear effects vanish. When n→�, the
potential behaves like a one-sided hard-core potential.

The equation of motion for each grain �except the bound-
ary grains� is

m
d2zi

dt2 = na��i,i−1
n−1 − �i+1,i

n−1 �, n � 2. �1�

We carry out dynamical simulations via the third-order Gear
algorithm �13�. We choose 10−5 m, 2.36�10−5 kg, and
1.0102�10−3 s as the units of distance, mass, and time, re-
spectively. The integration time step dt used was small
enough to resolve the finer details while allowing runs over
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many decades in time. Typically for n=2.5 we use dt=5
�10−7 and for n=2.1, dt=10−6. The grain diameter is set to
100, i.e., 1 mm, m=1 and a=5657 �8�, a value �=4.14
�107 N /m3/2� which is in the range of elasticity of silicate
materials. In order to compare to previous work �see Ref.
�10��, we also perform simulations using a=1 when we con-
sider n�5 /2. In the calculations presented below, we use
N=500 for even chains and N=499 for odd chains. In our
simulations, energy is conserved to an accuracy of 0.004%
over 106 time steps. SSWs are generated in the odd and even
chains using different initial velocities.

III. THEORETICAL CONSIDERATIONS

Observe that there is no characteristic length scale for
Taylor expansion of the right-hand side �RHS� of Eq. �1� in
terms of �i,i	1. Therefore, it is not possible to obtain a qua-
dratic dependence of �i,i	1 on the RHS. Consequently, no
acoustic propagation is admissible in this system �6,8,14�.
So, no perturbation can spread from one grain to the next via
sustained oscillations of the grains. Hence, the perturbation
cannot spread into the system as it does in a chain of har-
monic oscillators, or as in a chain with both harmonic and
anharmonic nearest-neighbor interactions �15�.

Due to the nonlinear nature of the grain-grain repulsion,
we suggest that energy transport between grains can only
happen during the short contact times between them. Virial
theorem �16� applied to our system yields the following re-
sult: 2�Ekin�=n�Epot� �where �¯� is the time-averaged total
kinetic energy� or that �Ekin�= n

n+2E, where E is the total en-
ergy imparted via some initial perturbation. For spherical
grains �Ekin�= 5

9E. This result is confirmed in our simulations
and detailed elsewhere �11�.

Since no acoustic propagation is allowed, and energy
transport must transpire, an allowed mechanism for satisfy-
ing both the conditions might be the presence of a propagat-
ing energy pulse. Simulations confirm that any perturbation
initiated in the system described by Eq. �1� must propagate
as a SW �11�.

Since Hertz law describes the repulsive force arising from
small deformations of elastic grains, the dynamics relates to
pulse propagation at speeds that are orders of magnitude
smaller than sound speed in the elastic grains. As in nonlin-
ear waves, the pulse speed depends upon the perturbation
details and the pulse width varies with n, being 1 grain di-
ameter across if n→� and with the width →� if n→2 �14�.
For practical purposes, the quantity �Ekin� serves as a way of
determining whether a solitary wave has formed.

We now qualitatively explain why SSWs must form. Let
us first argue why SWs must break and reform during a
collision event. If L is the width and v is the speed of the
SW, then 
= L

v defines the time taken for the transfer of me-
chanical energy between the leading and the trailing edges of
the SW. Thus, when two identical and opposite propagating
SWs with each involving several grains collide across times
�t�
, the grains in the two leading edges of the colliding
SWs would be traveling in opposite directions to the grains
trailing these. Causality requires finite time must be taken by
SWs to pass through each other or, equivalently, for a SW to

reverse direction. Since across times �t�
 the original SWs
cannot be stable, after the collision the SWs must be re-
placed by newly formed SWs. So, the precollision and post-
collision SWs may not be identical in their properties.

We now turn our attention to why SSWs form. Virial
theorem dictates the kinetic and potential energies that can
be carried by a SW. In earlier work �11� we have argued that
the time-averaged width of a SW is 7 grain diameters, where
the velocities of the leading or trailing grains and the central
grain vary by 6 orders of magnitude �Table I of �11��. The
finiteness of the width of the SW is often referred to in the
literature as the existence of compact support. For the sake
of simplicity let us consider the ratios of the grain velocities
in a SW when it is away from the boundaries and ignore the
grains moving at velocities that are an order of magnitude or
more smaller than the velocity of the central grain. Table I of
Ref. �11� reveals that the velocity ratios would be roughly
0.3:1:0.3 with the SW being about 3 grain diameters wide in
this crude approximation. When this 3-grain packet collides
with a boundary and the leading grain starts moving in op-
position to the trailing ones, the former SW can be thought of
as being squeezed. Such squeezing would naturally raise the
potential-energy content of the bundle beyond what is dic-
tated by the virial theorem and cannot be stable. To lower
this excess potential energy, the only option the bundle has is
to involve interactions with more grains as it turns around.
Simply put, we have just argued that the squeezing of the
SW must cause it to dilate. Since compact support must be
realized once the bundle is away from the boundary, and
there is no mechanism that allows taking back of the mo-
mentum transferred to the grains, the system has no choice
but to form a returning SW with less energy than its precol-
lision predecessor and one or more smaller SWs, which we
call SSWs. As we shall see, simulations presented later in-
deed confirm our argument. It is not surprising hence that
SSW production crucially depends on the nature of the
boundary. In the case of collisions where a central grain re-
mains static at all times, some of the excess potential energy
caused by the squeezing of the SW is transferred to this
central grain. Hence, SSW production is significantly re-
duced in collisions involving a static central grain. This is
not the case when the collision happens at a grain edge
where no potential energy can be temporarily stored and
thus, as one would expect, more SSWs are produced at such
collisions.

IV. DYNAMICAL SIMULATIONS

We let two identical impulses directed into the chain be
initiated at t=0 by assigning v1�0�=v0 and vN�0�=−v0 at the

TABLE I. Differences between leading SSWs in odd and even
chains �see text�. Ekin%��Ekin max SSW /Ekin max SW��100 is mea-
sured at grain 150.

Chain cSW tc cSSW vmax SSW /10−6 Ekin%

Odd 8.4 24.684 3.80 6.397 0.035

Even 8.4 24.746 4.68 18.304 0.288
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two ends of the granular alignments. These impulses lead to
the formation of identical SWs �11�. We first present our
studies for even-N �even-chain� and odd-N �odd-chain� sys-
tems. The SWs approach and cross at the edge of the two
central grains in the even chain and at the center of the cen-
tral grain in the odd chain. After the crossing occurs, the
SWs continue toward the opposite ends of the chain. Our
focus is on the detailed dynamics of the crossing event. In
the absence of a two-SW solution, this dynamics cannot be
probed analytically. Experimental investigation of the pro-
cess is also challenging because �see, for example, �9�� the
effects are subtle and dissipative forces complicate measure-
ments. This is the reason why we ignore dissipation in our
calculations. Effects of dissipation �17� can always be incor-
porated when making direct comparison with specific experi-
ments �again see �9��.

V. ODD AND EVEN CHAINS

As argued above, we find that SSWs are generated soon
after the two SWs meet and travel through one another. The
SSWs generated in odd and even chains turn out to be dif-
ferent. Extensive simulations have been carried out assuming
n=2.5 and a=5657 and v0= 	5�10−4. We track the time
evolution of the grain displacements and velocities and com-
pute the velocities of propagation of the SWs �cSW� and the
SSWs �cSSW�. In addition, we compute the total kinetic and
potential energies as functions of time. Figure 1 shows the
space and time dependences of the total kinetic energies of
the traveling SWs in an even and in an odd chain, respec-
tively. SSW formation commences immediately after colli-
sion of the SWs and the energy of the first SSW is noticeably
smaller in the odd chain when compared to the same in the
even chain. Table I summarizes the values of cSW, the instant
of the collision tc, cSSW, and the velocity of the fastest-
moving grain within the SSW, vmax SSW, in each case and
shows that the SSW in the even chain carries 8.2 times more
kinetic energy than in the odd chain.

In addition to the above study, we have considered studies
with v0=10−4, 5�10−5, 3�10−5, and 10−5. Our calculations
show that the kinetic energies of the fastest-moving SSW in
the even chain are 8.20, 7.86, 8.44, and 9.08 times more than
the kinetic energies of the fastest-moving SSW in the odd
chain. Given that the dynamics in these systems is highly
sensitive to the details of the initial conditions, and that the
SW itself is a moving object with some inevitable fluctua-
tions in its length, the kinetic energy carried by the fastest-
moving grain of the leading SSW in the even chain is con-
sistently 	8 times larger. Recall that SSWs produced due to
head-on collision carry very small amounts of energy and
may be difficult to experimentally detect. However, if direct
detection is to be attempted, SSW formation in edge colli-
sions may be easier to detect by nearly an order of magni-
tude.

Our studies also show that in spite of the differences in
the kinetic energies of the largest SSWs between the even
and odd cases, the actual amounts of energy used by the odd
and the even chains to make all the SSWs produced in each
chain are not very different. We find that 	2.9% of the total

kinetic energy of the original SWs was used to make the
SSWs for the even case and 	2.3% of the total kinetic en-
ergy was used to make the SSWs for the odd case. Observe
that virial theorem allows us to readily obtain the total ki-
netic energy from the total energy and hence 	2.9% and
	2.3% of the kinetic energy in original SWs were used to
make the SSWs in the even and the odd cases, respectively.
Interestingly, we found that the energy used to make SSWs
in collisions against hard walls �i.e., where all forces acting
on the wall is set to zero� was also 	2.3%. Thus, in terms of
SSW production, as one might expect, the hard-wall case
behaves similarly as the odd-chain case. If the wall, however,
is softened, production of more energetic SSWs, as observed
experimentally by Job et al. �9�, is expected.

To understand the dynamics of SW-SW collisions, we fo-
cus on the displacements and the kinetic energies of several
grains in the vicinity of the collision point in the even and
odd cases, respectively. Here we use v0= 	5�10−5. In Fig.
2�a� �even case� and Fig. 2�b� �odd case�, we first consider
grain displacements. In Fig. 2�a�, we show the displacements
of grains 248–253 in consecutive order with labels �i�–�vi�.
Time axis runs from right to left in Fig. 2�a�. The SW-SW
collision happens between grains 250 and 251. In the par-
ticular simulations shown here, the grains are barely in con-
tact before the collision. Postcollision we find that grains 249
and 250, 250 and 251, and 251 and 252 lose contact. All the
grains shown here move significantly after the collision pro-
cess, indicative of the higher kinetic energy available imme-

[
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[
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[
]

[
]

FIG. 1. SSWs are created after the crossing of two identical
SWs traveling in opposite directions in �a� an even chain �N
=500� and �b� an odd chain �N=499�. Only parts of the original
SWs are visible. Observe that the energy content of the SSW in the
even case is significantly larger than that in the odd case. Kinetic
energy of the grains �in arbitrary units�, time �in arbitrary units�, and
grain positions are shown along the z, y, and x axes, respectively.
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diately after the collision process in edge collisions. The
sharp and distinct time dependence of the slopes of the
displacement-time graphs immediately after the collision is
associated with the times at which SSWs form. The distinct
rates of slope change immediately after the collision is
needed to ensure that all the grains necessary to make a SSW
can conspire to produce them.

In Fig. 2�b�, we show the displacements of grains 248–
252 in consecutive order with labels �i�–�v�. Time axis runs
from left to right in Fig. 2�b�. In this odd chain, the central
grain, grain 250, remains at rest at all times. In this case
grains 249 and 250 and grains 250 and 251 lose contact
postcollision. Grains 249 and 251 rattle between grains 250
and between 248 and 252, respectively, immediately follow-
ing the collision. In both cases, the granular alignments do
not return to their original equilibrium configurations.

It is not easy to visualize what happens physically to the
energy bundle as it collides and immediately postcollision by
just looking at Fig. 2. It is easiest perhaps to imagine that it
is the same energy bundle that hits an edge and turns around.
With that in mind, we have attempted to visualize the colli-
sion process in Figs. 3 and 4. In Fig. 3, we show the collision
for the even chain and the time-sequenced velocity histo-
grams clearly confirm our hypothesis that the SW gets
squeezed in the course of the collision process. This means
that the potential energy of what was the SW prior to the
collision is now a squeezed energy bundle with higher po-
tential energy and hence less kinetic energy than that war-
ranted by the virial theorem. The bundle now must dilate as
it turns around so as to relieve itself of the excess potential
energy and convert it to kinetic energy. But a SW is the only
way to transport energy through an unloaded granular chain
and the SW can only be of a fixed width. Thus, the system
has no choice but to generate SSWs. The results shown in
Fig. 4 are very similar to those in Fig. 3 except that the times
are chosen as appropriate for the odd-numbered system
where the central grain, grain 250, remains static at all times.

The complex dynamics of the collision process is evident by
looking at the velocity histogram at t=47.042 where the
front of the SW is moving in opposition to the grains behind
it. At t=48.676 we see that five grains are moving, and in the
velocity scale in which the data are shown this means that
SSW formation is required due to dilation of the original SW
following the collision process.

FIG. 2. Panels �a� and �b� show displacements of the grains in
time in the collision region for even and odd systems, respectively.
Data have been normalized and shifted in order to match the initial
positions of grains in both systems �see text�.

t=46.900 t=47.000

t=47.140 t=47.150

t=47.290

t=49.000

FIG. 3. The velocities of grains 245–250 are shown for the even
chain at instants just before, during, and just after the collision.
Grain 250 is the time-evolving edge grain here. Observe how the
measurable velocities of four grains at t=46.900 gets squeezed �see
text� and eventually ends up being shared by six grains at t
=49.000. Compact support demands that SSWs form as such a wide
energy bundle cannot be fitted within a single SW. The vertical axes
have a multiplier of 10−5.

t=46.770 t=46.875

t=47.040 t=47.042

t=47.221 t=48.676

FIG. 4. The velocities of grains 245–250 are shown for the odd
chain at instants just before, during, and just after the collision. The
vertical axes have a multiplier of 10−5.
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The processes of SSW creation for edge and central grain
collisions, respectively, are best captured in Fig. 5. The left
panels describe edge collision in the even system and the
right panels describe the odd-system collision case. Observe
that grain 250 on the left panel begins to move as one SW
reaches it, momentarily stops, and then moves as the second
SW reaches it. As shown in Fig. 2, motion due to each of
these SWs causes displacements in opposite directions. This
feature can also be seen by observing the velocity histograms
at t=47.140 and t=47.200 in Fig. 3. Further, the zeroing of
kinetic energy shortly after t=47 for grain 250 implies that
potential energy is stored in the grain �which is not shown
explicitly here� during the collision time. Due to causality
effects, grain 250 is unable to return to its original equilib-
rium position as soon as the SWs cross as shown in Fig. 2.
Observe in Fig. 5 that the total time across which grain 250
moves here exceeds the typical time of motion of a grain due
to the passage of a SW. We contend that the grain gets si-
multaneously squeezed from both directions during collision
and hence ends up possessing the potential energy across a
longer time than that needed during the passage of a single
solitary wave through a grain. Because a nonlinear system
under zero-loading condition such as this can only propagate
energy through the grains via SWs, grain 250 must now dis-
charge its energy by forming one or more SWs �in each
direction�. However, generation of a single SW by a grain
that holds potential energy because of compression from
both sides requires additional time, and hence more space
�since t and z are related by c�. However, each SW has fixed
width. Thus, grain 250 must first transfer its energy to initiate
the formation of a single SW, which is the largest SW it can
generate with the kinetic energy it possesses. Indeed this is
what is seen in all the existing simulations �see the review by
Sen et al. in �8��. This SW can only carry the allowed
amount of potential energy. SSWs, one or typically more,
must now form to discharge the remaining energy in the
same manner. Qualitatively speaking, this is why we see that

grain 245 �shown in the bottom panels of Fig. 5� is about to
give birth to a SSW. The distance scale associated with the
formation of the first SSW �see the dynamics of grain 245�
approximately relates to the distance scale associated with
the conversion of an arbitrary amount of energy into a SW,
which is estimated to be 
7–10 grains �11�.

The dynamics of grain 250 in the odd chain reflects no
motion as the two SWs pass through it. However, grain 249
�and 251; not shown� behaves somewhat similarly to grain
250 in the even chain. In both cases, a SSW is born past
grain 245. The first SSW is born earlier in time in the even
�left panel� chain. A distinguishing feature in the dynamics of
grain 249 is the “flatline” behavior immediately after the
collision. To understand its origin observe that immediately
after an edge collision the grains end up moving in opposite
directions and lose contact. This is when there is no net force
on them and hence the velocity and the kinetic energy are
constants �see Fig. 2�b��. Because no potential energy can be
stored at the grain edge, the crossing of SWs can be com-
pared to a SW hitting an infinitely hard wall. The only pos-
sibility now is for the leading grain, which just hit the wall,
to rebound without any loss of kinetic energy, while the oth-
ers in the original SW still moves forward. The energy in-
volved in this “train wreck” must be harnessed into SWs in
order to construct a viable solution to the equations of mo-
tion �which do not admit stable entities other than SWs�.
Thus, the system immediately starts to remake a large SW
and SSWs, as needed. The difference between this case and
the odd-chain case is that the grains now have more kinetic
energy than in the previous case. This system hence makes
SWs and SSWs that carry more kinetic and potential ener-
gies and move hence move faster �as seen in Table I�.

VI. GRANULAR CHAINS WITH SOFTER INTERACTION

In the above discussions we have focused on granular
alignments with n=2.5. It is not unusual �12� to think in

[
]

[
]

[
]

FIG. 5. The birth of the first SSW is shown for the even case in the left panel and for the odd case in the right panel �see text�. Here
n=2.5, a=5657, and v0= 	5�10−5.
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terms of alignments where grain-grain interactions are Hertz
type except that an arbitrary n ��2� is employed. When n
→�, the SWs are 1 grain diameter wide �18� and progres-
sively smaller amounts of potential energy will be involved
in the collisions. Hence SSW production will be suppressed.
The interesting regime hence is when n→2, when the poten-
tial energy of the propagating pulse approaches the value
of the kinetic energy and hence approaches half the total
energy.

We set a=1 and v0= 	1 in our numerical calculations,
then for �i,i+1�1, the n=2.1 system stores more potential
energy than the n=2.5 system. This means that a colliding
SW can be squeezed more during collisions. Since the po-
tential energy released from squeezing will also get con-
verted to kinetic energy over extended times compared to the
n=2.5 case here, one may expect long-lived dynamics asso-
ciated with the SW collision process in the collision region.
In Fig. 6 we show the velocity vs time behavior of a chosen
grain near the SW-SW collision point. We show that while
the single SSW created immediately after the collision in the
n=2.5 system carries more energy, the softer n=2.1 system
generates a large number of small SSWs, somewhat like that
of acoustic oscillations that would only be possible for a n
=2 system. The energy fraction used to make SSWs in the
n=2.5 system is 0.2%, while this proportion is only 0.01% in
the n=2.1 system. Thus, in addition to manipulating edge
versus central grain collisions, SSW production may be ma-
nipulated by considering systems with different n values.

VII. SUMMARY AND CONCLUSIONS

Here we have revisited the problem of collision of iden-
tical and opposite propagating SWs in unloaded granular
alignments where the collision happens at the contact point
between two adjacent grains. In that sense, this work is an
extension of the work in Ref. �10�, where such collisions
were probed when the SWs met at the center of a grain. The
purpose of this work, however, is broader. Here we establish
that depending upon the exact position of the collision point

of two identical and opposite propagating SWs in a granular
alignment, the resultant SSWs can carry significantly �in this
case as much as nine times� more energy.

SSWs typically carry very small amounts of energy and
are hence difficult to detect in laboratory experiments unless
the elastic properties of the wall against which a SW is col-
liding are manipulated �9�. Here we show that a significant
enhancement in SSW energies can be brought about without
introducing walls with different elastic constants. Further,
this work also sheds light on why the SSWs must form. We
have presented simple physics-based arguments involving
the virial theorem and squeezing and subsequent dilation of a
soft energy bundle to construct a qualitative rationale for
their formation. The simulation-based analyses presented
here confirm the arguments and offer insights into ways to
further enhance the energy carried by SSWs by rendering the
SWs more squeezable and insuring that the maximum pos-
sible number of grains can participate in the spatial dilation
of the returning energy bundle following the collision.

Anytime SWs collide, SWs will be squeezed and hence
SSW formation must follow. However, the energy content of
the SSWs can vary significantly depending upon whether the
SWs are identical or otherwise, moving in opposition or in
parallel, and, of course, the point at which the collision oc-
curs. In an idealized granular alignment with zero dissipation
and held within boundaries, a single SW initiated by a per-
turbation at t=0 will continue to break and produce SSWs.
Recent work �19� strongly suggests that in certain collisions
SWs can also grow in energy after collision. Our earlier
work has already suggested that SW breakdown and SW
growth processes eventually strike a balance in the time evo-
lution of these systems �see the review paper of Sen et al. in
Ref. �8��. At large enough times, the system tends to reach an
equilibriumlike �quasiequilibrium� phase with sustained
large energy fluctuations and work on such a phase has been
reported elsewhere �20,21�. The present work lends different
insights into the nature of energy-exchange processes during
the course of many-body interactions in purely nonlinear
systems and may have implications on tuning the relaxation
time to quasiequilibrium in purely nonlinear systems.
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FIG. 6. Velocity of grain 255—as function of time—using two
different intergrain interactions, n=2.5 and n=2.1, and an even
chain. For clarity, data for n=2.1 �solid line� have been shifted by
−0.02 in the y axis. Dashed line shows data with n=2.5.
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